

Gas-Cluster Ion-Beam Manufacturing Tool for Next-Generation Semiconductor Devices

Microelectronics Manufacturing Infrastructure
ATP Project Number: 70NANB8H4011
Project Start/End Dates: Oct 1998 - Oct 2001
ATP Project Manager: Purabi Mazumdar

Principal Investigator: David B. Fenner E P I O N Corporation, Billerica, Massachusetts

Company Overview

Founded to develop ion beam and laser beam technology for surface processing

37 Manning Road, Billerica, Massachusetts www.epion.com

- Products:
 - > Gas-Cluster Ion-Beam Smoother
 - > Pulsed-Laser Deposition
 - > Coating & Implant Services
- Revenue:
 - > 1999 \$ 4 M (est.)
 - > 2000 \$12 M (est.)
- 23,000 ft² facility with capacity to manufacture > \$50 M/yr
- Presently 46 employees
- Located in world-center of ion-beam design & manuf.
- Active funded R&D \$1 M/yr

epion Staff Employees 100 • Founded in 1984. Support · Engineering team 80 hired in 1998-'99. Engineers · Key managers **60** experienced in ion-beam design, Start of ATP 40 manufacturing and processes. **20** Grew from facilities of 11,500 sq-ft into 23,000 sq-ft in '99. 1999

Potential Applications for GCIB

- Atomic-Scale Smoothing, Planarization and Cleaning
 - Surfaces of all microelectronic materials, especially thin films.
 - Final touch polish after chemical-mechanical polish (CMP).
- Sputter Etching
 - Spot-addressable thickness trimming of films and patterns.
 - Analytical instrumentation (high-resolution depth profiling in SIMS).
- Reactive Deposition, especially at lower temperature
 - Multiple-layer compound material films (Si₃N₄, GaN).
 - Transparent electrically conductive films (ITO).
- Micromachining (MEMS)
 - Surface smoothing before wafer bonding in device fabrication.
- Ultra-Shallow Ion Implantation for MOSFET Fabrication
 - Decaborane implantation for source-drain extensions.

Smoothing Applications for GCIB

- Hard-disk (GMR) Magnetic Sensors
 - Dielectric gap layer, e.g., alumina and silica.
 - Magnetic shield layer, e.g., permalloy Ni-Fe.
 - Passivation layer, e.g., Ta.
 - Pole-tip cleaning after dicing of devices.
- Optics and Photonics
 - Mirror and lens, e.g., nickel-coated and diamond-turned mirror.
 - Fiber-optic filters, waveguides, and microlens, e.g. polysilicon.
- Semiconductors
 - High-κ dielectrics, e.g., Si₃N₄ and Ta₂O₅ and BaSrTiO₃
 - Floating gate metals.
 - Silicon-on-Insulator (SOI), e.g. SIMOX and BESOI, and ultra-thin Si on compliant-substrate SOI.

